2019中考数学复习资料:必做试题之梯形(3)

2018-08-11 09:42:00来源:网络

  新东方在线中考网整理了《2019中考数学复习资料:必做试题之梯形》,供同学们参考。

  11.(2014衡阳,第10题3分)如图,一河坝的横断面为等腰梯形 ,坝顶宽 米,坝高 米,斜坡 的坡度 ,则坝底 的长度为【 】

  A. 米 B. 米 C. 米 D. 米

  二.填空题

  1. ( 2014•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是 7+  .

  考点: 直角梯形.

  分析: 根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长.

  解答: 解:过点A作AE⊥BD于点E,

  ∵AD∥BC,∠A=120°,

  ∴∠ABC=60°,∠ADB=∠DBC,

  ∵BD平分∠ABC,

  ∴∠ABD=∠DBC=30°,

  ∴∠ABE=∠ADE=30°,

  ∴AB=AD,

  ∴AE= AD=1,

  ∴DE= ,则BD=2 ,

  ∵∠C=90°,∠DBC=30°,

  ∴DC= BD= ,

  ∴BC= = =3,

  ∴梯形ABCD的周长是:AB+AD+CD+BC=2+2+ +3=7+ .

  故答案为:7+ .

  点评: 此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键.

  2. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5° .

  (第1题图)

  考点: 等腰梯形的性质;多边形内角与外角

  分析: 首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.

  解答: 解:正八边形的内角和是:(8﹣2)×180°=1080°,

  则正八边形的内角是:1080÷8=135°,

  则∠1= ×135°=67.5°.

  故答案是:67.5°.

  点评: 本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.

  3. (2014•扬州,第14题,3分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为 40 cm3.

  (第2题图)

  考点: 翻折变换(折叠问题);三角形中位线定理

  分析: 根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.

  解答: 解:∵DE是△ABC的中位线,

  ∴DE∥BC,BC=2DE=10cm;

  由折叠的性质可得:AF⊥DE,

  ∴AF⊥BC,

  ∴S△ABC= BC×AF= ×10×8=40cm2.

  故答案为:40.

  点评: 本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.

  4. (2014•黑龙江龙东,第3题3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足 AB=DC(或∠ABC=∠DCB、∠A=∠D)等 条件时,有MB=MC(只填一个即可).

  考点: 梯形;全等三角形的判定..

  专题: 开放型.

  分析: 根据题意得出△ABM≌△△DCM,进而得出MB=MC.

  解答: 解:当AB=DC时,∵梯形ABCD中,AD∥BC,

  则∠A=∠D,

  ∵点M是AD的中点,

  ∴AM=MD,

  在△ABM和△△DCM中,

  ,

  ∴△ABM≌△△DCM(SAS),

  ∴MB=MC,

  同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,

  故答案为:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.

  点评: 此题主要考查了梯形的性质以及全等三角形的判定与性质,得出△ABM≌△△DCM是解题关键.


  相关链接

  2018中考试题及答案汇总

  2018中考作文题目汇总(31省市汇总)

声明:如本网转载稿涉及版权等问题,请作者致信lulei@xdfzx.com,我们将及时处理。

英语+新概念学习资料大礼包

微信扫码关注 自动获取网盘链接

更多资料
更多>>
更多内容

初中学英语资料大礼包合集

扫描下方二维码自动领取

初中资料
更多>>
更多英语课程>>