初中数学复习资料-正弦定理公式面面观

2020-06-22 18:00:00来源:网络

  正弦定理

  正弦定理是三角学中的一个定理。它指出了三角形三边、三个内角以及外接圆半径之间的关系。

  定理内容

  在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有

  a/sinA=b/sinB=c/sinC=2R

  即,在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径长度。

  定理变形

  a:b:c=sinA:sinB:sinC

  应用领域

  在解三角形中,有以下的应用领域:

  (1)已知三角形的两角与一边,解三角形

  (2)已知三角形的两边和其中一边所对的角,解三角形

  (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系

  直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。

  正弦定理变形形式

  a=2RSinA。b=2RsinB。c=2Rsinc

  asinB=bsinA,bsinC=csinB,asinC=csinA

  定理的意义

  正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦定理在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。

  一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。


本文关键字: 初中数学 数学

微信扫码加入【初中群】免费领取

6G初中全科学习资料

更多资料
更多>>
更多内容

初中学英语资料大礼包合集

扫描下方二维码自动领取

初中资料
更多>>
更多英语课程>>